Exponential Decay Current Synapses

David Wallace Croft, M.Sc. Atzori Lab, U.T. Dallas david@CroftSoft.com

2011 Nov 04 Fri

Copyright 2011 David Wallace Croft. This work is licensed under a Creative Commons Attribution 3.0 United States License. http://creativecommons.org/licenses/by/3.0/us/

Overview

- Conductance synapses can be modeled as exponential decay current synapses
- The membrane voltage has an alpha functionlike response to an exponential decay current injection
- Using exponential decay current synapses permits a closed-form solution to the membrane voltage in response to a pre-synaptic spike
- When spike times can be solved analytically, fast discrete event simulations can be used

Leaky Integrate-and-Fire

Synapse Types

- Conductance synapses
 - Current depends on difference between membrane voltage and channel reversal potential
 - Nonlinear so no solution to differential equations
 - Requires continuous simulation
- Current synapses
 - Models conductance synapses as injected current
 - Linear injections have solution which can be used to calculate whether voltage exceeds threshold
 - Permits use of discrete event simulation

Simulation Demonstration

- Animated Interactive Simulation Java Applet
- CroftSoft IntFire v1.1 http://www.CroftSoft.com/library/software/intfire/
- Left-click for excitatory input
- Right-click for inhibitory input

CroftSoft IntFire v1.1

CroftSoft IntFire v1.1

- Modified to show time series data for currents
- Modified to use exponential decay current synapses (injectors)
- Excitatory current negative since it flows into the neuron
- Net current is difference between excitatory current and inhibitory current
- Membrane voltage shows alpha function-like response to exponential decay current input

Net Current

Different Decay Rates

Firing Threshold

Closed-Form Solution

- Continuous simulation updated in small steps
- Discrete event simulation only updated at spike times so simulations can potentially run faster
- Closed-form solution to membrane voltage permits calculation of next spike time in reponse to most recent pre-synaptic spike
- Mihalas and Niebur (2009) use exponential decay current synapses since linear differential equations are analytically solvable

Leaky Integrator

Injected Current

- I injected current
- I' first derivative of the injected current
- I_0 peak current at start of injection
- λ injected current exponential decay rate
- t time since current injected
- $I' = -\lambda \cdot I$ exponential decay differential • $I = I_0 \cdot e^{-\lambda \cdot t}$ exponential decay closed-form

Capacitive Current

- V membrane voltage at time t
- V' first derivative of the membrane voltage
- V_n membrane voltage at start of injection
- C membrane capacitance
- I capacitive current
- I_c = C V'

Leakage Current

- G leakage conductance
- E leakage conducance reversal potential
- I leakage current

•
$$I_{L} = G \cdot (V - E)$$

Differential Equations

$$I' = -\lambda \cdot I$$
$$I_C = C \cdot V'$$
$$I_L = G \cdot (V - E)$$

$$I_C + I_L + I = 0$$

$$C \cdot V' + G \cdot (V - E) + I_0 \cdot e^{-\lambda \cdot t} = 0$$

Solving Homogeneous

$$a_{1} \cdot x' + a_{0} \cdot x = F$$

$$r = a_{0}/a_{1}$$

$$q = F/a_{1}$$

$$x' + r \cdot x = q$$

$$x' + r \cdot x = 0$$

$$x' = -r \cdot x$$

$$h = e^{-\int r}$$

$$x = k \cdot h$$

Standard Form

 $C \cdot V' + G \cdot (V - E) + I_0 \cdot e^{-\lambda \cdot t} = 0$ $C \cdot V' + G \cdot (V - E) = -I_0 \cdot e^{-\lambda \cdot t}$ $C \cdot V' + G \cdot V - G \cdot E = -I_0 \cdot e^{-\lambda \cdot t}$ $C \cdot V' + G \cdot V = G \cdot E - I_0 \cdot e^{-\lambda \cdot t}$ $V' + \frac{G}{C} \cdot V = \frac{G}{C} \cdot E - \frac{I_0}{C} \cdot e^{-\lambda \cdot t}$

Homogeneous Solution (1 of 2)

 $V' + \frac{G}{C} \cdot V = \frac{G}{C} \cdot E - \frac{I_0}{C} \cdot e^{-\lambda \cdot t}$ $V' + \frac{G}{C} \cdot V = 0$ $V' = -\frac{G}{C} \cdot V$ $\frac{V'}{V} = -\frac{G}{C}$

Homogeneous Solution (2 of 2)

 $\int_{0}^{l} \frac{V'}{V} = -\int_{0}^{l} \frac{G}{C}$ $\ln V = -\frac{G}{C} \cdot t + \alpha$ $V = e^{-\frac{G}{C} \cdot t + \alpha}$ $V = e^{\alpha} \cdot e^{-\frac{G}{C} \cdot t}$ $V = V_0 \cdot e^{-\frac{G}{C} \cdot t}$

Solving Nonhomogeneous $x' + r \cdot x = q$ $x = k \cdot h$ $x' = k' \cdot h + k \cdot h'$ $x'+r\cdot x = (k'\cdot h+k\cdot h')+r\cdot(k\cdot h)$ $x' + r \cdot x = k' \cdot h + k \cdot (h' + r \cdot h)$ $h' + r \cdot h = 0$ $x' + r \cdot x = k' \cdot h = q$ k' = q/h $k = \int q/h$ $x = k \cdot h$

Nonhomogeneous Solution (1 of 6)

Nonhomogeneous Solution (2 of 6)

Nonhomogeneous Solution (3 of 6)

Nonhomogeneous Solution (4 of 6)

Nonhomogeneous Solution (5 of 6)

Nonhomogeneous Solution (6 of 6)

References

- Burkitt (2006) A review of the integrate-and-fire neuron model:
 I. Homogeneous synaptic input, Biological Cybernetics, Volume 95, Number 1, 1-19.
- Croft (2011), "CroftSoft IntFire", http://www.CroftSoft.com/library/software/intfire/
- Guterman and Nitecki (1984) Differential Equations: A First Course, Saunders College Publishing, pp16-19.
- Mihalas and Niebur (2009) A generalized linear integrate-andfire neural model produces diverse spiking behaviors, Neural Computation 21, 704-718.
- Wikipedia, "Biological neuron model"