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Overview
● The Poisson (pwa - son) Distribution is used to 

determine the probability of some number of 
events occuring within a given span of time

● It can be derived from the Binomial Distribution 
in which a biased coin is flipped repeatedly

● In computer simulations, the random generation 
of Poisson distributed events can be simplified

● In a Poisson Process, events occur 
continuously and  independently of each other 
with a variance equal to the mean



  

Permutation
● Ordered arrangement of n distinct objects
● n choices for first selection,

n -1 choices for second selection,
n - 2 choices for third selection,
[...],
1 choice for last selection

● n * ( n - 1 ) * ( n - 2 ) * [...] * 3 * 2 * 1
● n factorial
● n!



  

Permutation subset
● Choose ordered subset k of n distinct objects
● Example:  choose just 3 of 7 distinct objects
● 7 first choices, 6 second, 5 third
● n * ( n - 1 ) * [...] * ( n - k + 1 )
● Example:  7 * ( 7 - 1 ) * ( 7 - 3 + 1 ) = 7 * 6 * 5
● Same as dividing n factorial by ( n - k ) factorial:

n * ( n - 1 ) * [...] * ( n - k + 1 ) * ( n - k ) * [...] * 1
--------------------------------------------------------------
                                                  ( n - k ) * [...] * 1

● n! / ( n - k )!
● Example:  7! / ( 7 - 3 )! = 7! / 4! = 7 * 6 *5



  

Combinations vs. Permutations
● Permutations ordered

abc, acb, bac, bca, cab, cba
● Combinations unordered:  abc
● Choose unordered subset k of n distinct objects
● Example:  choose 2 from set of 3 (abc), ordered
● n! / ( n - k )! = 3! / ( 3 - 2 )! = 3! / 1! = 3 * 2 = 6
● ab, ac, ba, bc, ca, cb
● Example:  choose 2 from 3, unordered
● ab (ab and ba), ac (ac and ca), bc (bc and cb)
● Number of combinations same as permutations 

divided by number of ways to permute subset



  

Combinations
● To get number of combinations (unordered)

● First calculate the number of ways we can create 
an ordered subset of length k from n distinct objects

● Then divide it by the number of ways to order k
● [ n! / ( n - k )! ] / k!
● n! / [ ( n - k )! * k! ]
● n choose k

● Example:  3 choose 2
● 3! / [ ( 3 - 2 )! * 2! ] = 3! / [ 1! * 2! ] = 3
● combinations of 2 from abc:  ab, ac, bc

(nk)



  

● Urn with three white balls numbered 1, 2, and 3
● Randomly draw two and paint them black

● 6 Permutations:  1, 2; 1, 3; 2, 1; 2, 3; 3, 1; 3, 2
● 3 Combinations:  w

1
b

2
b

3
, b

1
w

2
b

3
, b

1
b

2
w

3

● Randomly draw one and paint it black
● 3 Permutations:  1; 2; 3
● 3 Combinations:  w
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● Randomly draw three and paint them black
● 6 Permutations but just one combination:  b
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● Urn with three coins numbered 1, 2, and 3
● Coins in the urn all start tails up
● Randomly drawn coins are placed heads up
● Randomly draw two and place heads up

● 6 Permutations:  1, 2; 1, 3; 2, 1; 2, 3; 3, 1; 3, 2
● 3 Combinations:  t
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● Same as white balls being painted black
● Replace 3 drawn coins with 1 coin flipped thrice

Balls to Coins



  

Coin Flips
● Flip a coin thrice

● zero heads and three tails (ttt)
● one head and two tails (tth, tht, htt)
● two heads and one tail (thh, hth, hht)
● three heads and zero tails (hhh)

● Calculate using combinations
● n choose k:  n! / [ ( n - k )! * k! ]
● 3!/[(3-0)!*0!]+3!/[(3-1)!*1!]+3!/[(3-2)!*2!]+3!/[(3-3)!*3!]
● 1 + 3 + 3 + 1 = 8 different ways



  

Ordering
● Permutations ordered, combinations unordered
● To determine the number of ways we can flip a 

coin n times and get k heads, we use the 
formula for unordered combinations

● Strange because it looks like we are ordering
● two heads and one tail (thh, hth, hht)

● What was combined going from balls to coins?
● second head, third head:  thh
● third head, second head:  thh



  

Fair and Biased Coins
● Probability of heads on fair coin:  p = 0.5 (50%)
● Biased coins do not have 50% chance of heads
● Probability of head on biased coin:  p = 0.9
● Probability of tail:  q = 1 - p = 1 - 0.9 = 0.1
● Whether fair or biased, the number of ways of 

getting 2 heads in 3 coin flips is still the same:  
n choose k

● The difference is in the probability of getting 2 
heads in 3 coin flips



  

Binomial Distribution
● Binomial = "two names", e.g., "heads" or "tails"
● Probability of two heads in three coin flips?
● Pr(thh) + Pr(hth) + Pr(hht)
● q * p * p + p * q * p + p * p * q = 3 * p2 * q1

● Multiply p for each head, q for each tail, then 
multiply by the number of combinations

Prob(K=k )=(nk)∗pk∗q(n− k)



  

Binomial Distribution Example

● n = 3, k = 2, p = 0.9
● ( n! / [ ( n - k )! * k! ] ) * pk * ( 1 - p )( n - k )

● ( 3! / [ ( 3 - 2 )! * 2! ] ) * 0.92 * 0.1( 3 - 2 )

● ( 3! / [ 1! * 2! ] ) * 0.92 * 0.1
● 3 * 0.9 * 0.9 * 0.1 = 0.243 (or 24.3%)
● For a fair coin it would be 0.375 (or 37.5%)
● Biased coin, 3 heads:  1 * 0.93 * 0.10 = 72.9%

Prob(Y=k )=(nk)∗pk∗q(n− k)



  

Flipping Coins Over Time
● Suppose we flip a very biased coin once a second
● If p = 1 / 60, we would expect to have one head and 

59 tails each minute, on average
● In some minutes we might have more heads and in 

some minutes none at all
● To figure out the probability of getting a certain number 

of heads (k) in a minute, we could use the binomial 
distribution (n = 60, p = 1 / 60)

● We could add to figure out the cumulative probability 
of getting less than a number of heads in a minute, 
e.g., less than 3 heads:  Pr(k=0) + Pr(k=1) + Pr(k=2)



  

Events Per Second
● Now suppose we flip a coin every millisecond
● To keep the same event rate, use a constant
● Define λ (lambda) in units of heads per second
● λ = p * n = heads per flip * flips per second
● To increase n to 1,000 flips per second while 

keeping the event rate the same at
λ = 1 / 60 heads per second,
the probability p would need to be adjusted to
p = λ / n = ( 1 / 60 ) / 1,000 = 1 / 60,000



  

In the Limit, Part 1

limit
n→∞[(nk)⋅pk⋅q(n− k)]
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In the Limit, Part 2
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Pascal's Triangle

(x+ y )n=∑
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Pascal's Triangle Identity

(x+ y )n=∑
k=0

n

(nk)⋅x(n−k )⋅yk

(1+α
n
)
n
=∑
k=0

n

(nk)⋅[αn ]
k



  

Exponential Function Identity
limit
n→∞(1+α

n )
n
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In the Limit, Part 3
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In the Limit, Part 4
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Poisson distribution

Skbkekas, "Plot of the probability mass function for the Poisson distribution", 
http://en.wikipedia.org/wiki/File:Poisson_pmf.svg, 2010 Feb 10, viewed 2011 Jul 04,
licensed under the Creative Commons Attribution 3.0 Unported license,
http://creativecommons.org/licenses/by/3.0/deed.en.

http://en.wikipedia.org/wiki/File:Poisson_pmf.svg
http://creativecommons.org/licenses/by/3.0/deed.en


  

Poisson Distribution

● If λ  is 20 events per second, what is the 
probability that there will be one or more events 
in a twentieth of a second?

● ΔT = 0.05 seconds; λ * ΔT = 1
● Prob ( K >= 1 ) = 1 - Prob ( K = 0 ) = 1 - e-λ*ΔT

= 1 - e-1 = 1 - 0.367879 = 0.632121 = 63%

Prob(K=k )=λk

k!
⋅e−λ

Prob(K=k )= (λ⋅ΔT )k

k !
⋅e−λ⋅ΔT



  

Poisson Simulation

● If your computer simulation is being updated 
with a very small time step, what probability do 
you assign a Poisson distributed event?

● Assume two or more events in the same very 
small time step improbable

● At 20 events per second and ΔT = 1 ms,
Prob ( K >= 1 ) = 1 - Prob ( K = 0 ) = 1 - e-λ*ΔT

= 1 - e-0.020 = 1 - 0.9801 = 0.0198 ~= 0.020
● NB:  Prob ( K >= 1 ) ~= λ*ΔT for small λ*ΔT

Prob(K=k )= (λ⋅ΔT )k

k !
⋅e−λ⋅ΔT



  

Poisson Process
● Events occur continuously at some fixed rate

● But are assumed not to occur simultaneously
● Events occur independently of each other

● The property of memorylessness
● Examples:  the count for a given unit of time of

● Atoms that radioactively decay
● Raindrops that land on a plate
● Visitors to a website
● Neural action potentials



  

Mean = Rate

E (K )=∑
k=0

∞
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∞
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∞
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Variance = Mean, Part 1

Var (K )=∑
k=0

∞

(k−λ)2⋅p(k ,λ)=∑
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Variance = Mean, Part 2

∑
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