Poisson Distribution

David Wallace Croft, M.Sc. Atzori Lab, U.T. Dallas david@CroftSoft.com

2011 Jul 08 Fri

Copyright 2011 David Wallace Croft.
This work is licensed under a Creative Commons Attribution 3.0 United States License.
http://creativecommons.org/licenses/by/3.0/us/

Overview

- The Poisson (pwa - son) Distribution is used to determine the probability of some number of events occuring within a given span of time
- It can be derived from the Binomial Distribution in which a biased coin is flipped repeatedly
- In computer simulations, the random generation of Poisson distributed events can be simplified
- In a Poisson Process, events occur continuously and independently of each other with a variance equal to the mean

Permutation

- Ordered arrangement of n distinct objects
- n choices for first selection, $\mathrm{n}-1$ choices for second selection, n-2 choices for third selection,
[...],
1 choice for last selection
- n * $(n-1)$ * $(n-2)$ * [...] * 3 * 2 * 1
- n factorial
- n !

Permutation subset

- Choose ordered subset k of n distinct objects
- Example: choose just 3 of 7 distinct objects
- 7 first choices, 6 second, 5 third
- $\mathrm{n}^{*}(\mathrm{n}-1){ }^{*}[\ldots]$ * $(\mathrm{n}-\mathrm{k}+1)$
- Example: 7 * $7-1$) * $7-3+1)=7$ * 6 * 5
- Same as dividing n factorial by ($n-k$) factorial: n * $(n-1){ }^{*}[\ldots]$ * $(n-k+1)$ * $\left.n-k\right) *[\ldots]$ * 1
- $n!/(n-k)$!
- Example: 7! / ($7-3$)! = 7! / 4! = 7 * 6 *5

Combinations vs. Permutations

- Permutations ordered abc, acb, bac, bca, cab, cba
- Combinations unordered: abc
- Choose unordered subset k of n distinct objects
- Example: choose 2 from set of 3 (abc), ordered
- $\mathrm{n}!/(\mathrm{n}-\mathrm{k})!=3!/(3-2)!=3!/ 1!=3$ * $2=6$
- ab, ac, ba, bc, ca, cb
- Example: choose 2 from 3, unordered
- ab (ab and ba), ac (ac and ca), bc (bc and cb)
- Number of combinations same as permutations divided by number of ways to permute subset

Combinations

- To get number of combinations (unordered)
- First calculate the number of ways we can create an ordered subset of length k from n distinct objects
- Then divide it by the number of ways to order k
- [$n!/(n-k)!] / k!$
- $\mathrm{n}!/\left[(\mathrm{n}-\mathrm{k})\right.$! $\left.^{*} \mathrm{k}!\right]$
- n choose k $\binom{n}{k}$
- Example: 3 choose 2
- 3! / [($3-2$)! * 2!] = 3! / [1! * 2!] = 3
- combinations of 2 from abc: ab, ac, bc

Random Combinations

- Urn with three white balls numbered 1,2 , and 3
- Randomly draw two and paint them black
- 6 Permutations: 1, 2; 1, 3; 2, 1; 2, 3; 3, 1; 3, 2
- 3 Combinations: $w_{1} b_{2} b_{3}, b_{1} w_{2} b_{3}, b_{1} b_{2} w_{3}$
- Randomly draw one and paint it black
- 3 Permutations: 1; 2; 3
- 3 Combinations: $\mathrm{w}_{1} \mathrm{w}_{2} \mathrm{~b}_{3}, \mathrm{w}_{1} \mathrm{~b}_{2} \mathrm{w}_{3}, \mathrm{~b}_{1} \mathrm{w}_{2} \mathrm{w}_{3}$
- Randomly draw three and paint them black
- 6 Permutations but just one combination: $b_{1} b_{2} b_{3}$

Balls to Coins

- Urn with three coins numbered 1, 2, and 3
- Coins in the urn all start tails up
- Randomly drawn coins are placed heads up
- Randomly draw two and place heads up
- 6 Permutations: 1, 2; 1, 3; 2, 1; 2, 3; 3, 1; 3, 2
- 3 Combinations: $\mathrm{t}_{1} \mathrm{~h}_{2} \mathrm{~h}_{3}, \mathrm{~h}_{1} \mathrm{t}_{2} \mathrm{~h}_{3}, \mathrm{~h}_{1} \mathrm{~h}_{2} \mathrm{t}_{3}$
- Same as white balls being painted black
- Replace 3 drawn coins with 1 coin flipped thrice

Coin Flips

- Flip a coin thrice
- zero heads and three tails (ttt)
- one head and two tails (tth, tht, htt)
- two heads and one tail (thh, hth, hht)
- three heads and zero tails (hhh)
- Calculate using combinations
- n choose k : $n!/[(n-k)!$ * k]
- 3!/[(3-0)!*0!]+3!/[(3-1)!*1!]+3!/[(3-2)!*2!]+3!/[(3-3)!*3!]
- $1+3+3+1=8$ different ways

Ordering

- Permutations ordered, combinations unordered
- To determine the number of ways we can flip a coin n times and get k heads, we use the formula for unordered combinations
- Strange because it looks like we are ordering
- two heads and one tail (thh, hth, hht)
- What was combined going from balls to coins?
- second head, third head: thh
- third head, second head: thh

Fair and Biased Coins

- Probability of heads on fair coin: $p=0.5$ (50\%)
- Biased coins do not have 50% chance of heads
- Probability of head on biased coin: $p=0.9$
- Probability of tail: $q=1-p=1-0.9=0.1$
- Whether fair or biased, the number of ways of getting 2 heads in 3 coin flips is still the same: n choose k
- The difference is in the probability of getting 2 heads in 3 coin flips

Binomial Distribution

- Binomial = "two names", e.g., "heads" or "tails"
- Probability of two heads in three coin flips?
- $\operatorname{Pr}($ thh $)+\operatorname{Pr}(h t h)+\operatorname{Pr}(h h t)$
- $q^{*} p^{*} p+p^{*} q^{*} p+p^{*} p$ * $q=3$ * $p^{2}{ }^{*} q^{1}$
- Multiply p for each head, q for each tail, then multiply by the number of combinations

$$
\operatorname{Prob}(K=k)=\binom{n}{k} * p^{k} * q^{(n-k)}
$$

Binomial Distribution Example

$$
\operatorname{Prob}(Y=k)=\binom{n}{k} * p^{k} * q^{(n-k)}
$$

- $\mathrm{n}=3, \mathrm{k}=2, \mathrm{p}=0.9$
- ($\left.n!/\left[(n-k)!^{*} k!\right]\right)^{*} p^{k}$ * $(1-p)^{(n-k)}$
- ($\left.3!/\left[(3-2)!{ }^{*} 2!\right]\right)^{*} 0.9^{2} * 0.1^{(3-2)}$
- (3 ! / [1! * 2!]) * 0.9^{2} * 0.1
- 3 * 0.9 * 0.9 * $0.1=0.243$ (or 24.3%)
- For a fair coin it would be 0.375 (or 37.5%)
- Biased coin, 3 heads: $1^{*} 0.9^{3} 0.1^{0}=72.9 \%$

Flipping Coins Over Time

- Suppose we flip a very biased coin once a second
- If $p=1$ / 60 , we would expect to have one head and 59 tails each minute, on average
- In some minutes we might have more heads and in some minutes none at all
- To figure out the probability of getting a certain number of heads (k) in a minute, we could use the binomial distribution ($n=60, p=1 / 60$)
- We could add to figure out the cumulative probability of getting less than a number of heads in a minute, e.g., less than 3 heads: $\operatorname{Pr}(k=0)+\operatorname{Pr}(k=1)+\operatorname{Pr}(k=2)$

Events Per Second

- Now suppose we flip a coin every millisecond
- To keep the same event rate, use a constant
- Define λ (lambda) in units of heads per second
- $\lambda=p$ * $n=$ heads per flip * flips per second
- To increase n to 1,000 flips per second while keeping the event rate the same at $\lambda=1 / 60$ heads per second, the probability p would need to be adjusted to $p=\lambda / n=(1 / 60) / 1,000=1 / 60,000$

In the Limit, Part 1

$$
\begin{gathered}
\operatorname{limit}_{n \rightarrow \infty}\left[\binom{n}{k} \cdot p^{k} \cdot q^{(n-k)}\right] \\
\operatorname{limit}_{n \rightarrow \infty}\left[\left(\frac{n!}{(n-k)!\cdot k!}\right) \cdot\left(\frac{\lambda}{n}\right)^{k} \cdot\left(1-\frac{\lambda}{n}\right)^{(n-k)}\right] \\
\frac{\lambda^{k}}{k!} \operatorname{limit}_{n \rightarrow \infty}\left[\left(\frac{n!}{(n-k)!}\right) \cdot\left(\frac{1}{n}\right)^{k} \cdot\left(1-\frac{\lambda}{n}\right)^{(n-k)}\right]
\end{gathered}
$$

In the Limit, Part 2

$$
\begin{gathered}
\frac{\lambda^{k}}{k!} \cdot \operatorname{limit}_{n \rightarrow \infty}\left[\left(\frac{n!}{(n-k)!}\right) \cdot\left(\frac{1}{n}\right)^{k} \cdot\left(1-\frac{\lambda}{n}\right)^{(n-k)}\right] \\
\frac{\lambda^{k}}{k!} \operatorname{limit}_{n \rightarrow \infty}\left[\left(\frac{n!}{(n-k)!}\right) \cdot\left(\frac{1}{n}\right)^{k} \cdot\left(\frac{n}{n-\lambda}\right)^{k} \cdot\left(1-\frac{\lambda}{n}\right)^{n}\right] \\
\frac{\lambda^{k}}{k!} \cdot \operatorname{limit}_{n \rightarrow \infty}\left[\left(\frac{n!}{(n-k)!}\right) \cdot\left(\frac{1}{n-\lambda}\right)^{k} \cdot\left(1-\frac{\lambda}{n}\right)^{n}\right]
\end{gathered}
$$

Pascal's Triangle

$$
\begin{gathered}
(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} \cdot x^{(n-k)} \cdot y^{k} \\
1 \\
1 \cdot x+1 \cdot y \\
1 \cdot x^{2}+2 \cdot x \cdot y+1 \cdot y^{2} \\
\binom{0}{0} \cdot x^{(0-0)} \cdot y^{0} \\
\left(\begin{array}{l}
1 \\
2 \\
0
\end{array}\right) \cdot x^{(1-0)} \cdot y^{0}+\binom{1}{1} \cdot x^{(2-0)} \cdot y^{0}+\binom{2}{1} \cdot x^{(2-1)} \cdot y^{1}+\binom{2}{2} \cdot x^{(2-2)} \cdot y^{2}
\end{gathered}
$$

Pascal's Triangle Identity

$$
\begin{gathered}
(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} \cdot x^{(n-k)} \cdot y^{k} \\
\left(1+\frac{\alpha}{n}\right)^{n}=\sum_{k=0}^{n}\binom{n}{k} \cdot\left[\frac{\alpha}{n}\right]^{k}
\end{gathered}
$$

Exponential Function Identity

$$
\operatorname{limit}_{n \rightarrow \infty}\left(1+\frac{\alpha}{n}\right)^{n}
$$

$$
\operatorname{limit}_{n \rightarrow \infty}^{n} \sum_{k=0}^{n}\binom{n}{k} \cdot \frac{\alpha^{k}}{n^{k}}=\operatorname{limit}_{n \rightarrow \infty}^{n} \sum_{k=0}^{n}\left[\frac{n!}{k!\cdot(n-k)!}\right] \cdot \frac{\alpha^{k}}{n^{k}}
$$

$$
\operatorname{limit}_{n \rightarrow \infty} \sum_{k=0}^{n}\left[\frac{n \cdot(n-1) \cdot(n-2) \cdot \ldots \cdot(n-k+1)}{k!}\right] \cdot \frac{\alpha^{k}}{n^{k}}
$$

In the Limit, Part 3

$$
\frac{\lambda^{k}}{k!} \cdot \operatorname{limit}_{n \rightarrow \infty}\left[\left(\frac{n!}{(n-k)!}\right) \cdot\left(\frac{1}{n-\lambda}\right)^{k} \cdot\left(1-\frac{\lambda}{n}\right)^{n}\right]
$$

$$
\operatorname{limit}_{n \rightarrow \infty}\left(1+\frac{-\lambda}{n}\right)^{n}=e^{-\lambda}
$$

$$
\frac{\lambda^{k}}{k!} \cdot e^{-\lambda} \cdot \underset{n \rightarrow \infty}{\operatorname{limit}}\left[\frac{n \cdot(n-1) \cdot[\ldots] \cdot(n-k+1)}{(n-\lambda)^{k}}\right]
$$

In the Limit, Part 4

$$
\frac{\lambda^{k}}{k!} \cdot e^{-\lambda} \cdot \underset{n \rightarrow \infty}{\operatorname{limit}}\left[\frac{n \cdot(n-1) \cdot[\ldots] \cdot(n-k+1)}{(n-\lambda)^{k}}\right]
$$

$$
\frac{\lambda^{k}}{k!} \cdot e^{-\lambda} \cdot \operatorname{limit}_{n \rightarrow \infty}\left[\frac{n^{k}+[\ldots]}{n^{k}+[\ldots]}\right]
$$

$$
\frac{\lambda^{k}}{k!} \cdot e^{-\lambda}
$$

Poisson distribution

Skbkekas, "Plot of the probability mass function for the Poisson distribution", http://en.wikipedia.org/wiki/File:Poisson_pmf.svg, 2010 Feb 10, viewed 2011 Jul 04, licensed under the Creative Commons Attribution 3.0 Unported license,
http://creativecommons.org/licenses/by/3.0/deed.en.

Poisson Distribution

$$
\operatorname{Prob}(K=k)=\frac{\lambda^{k}}{k!} \cdot e^{-\lambda}
$$

- If λ is 20 events per second, what is the probability that there will be one or more events in a twentieth of a second?

$$
\operatorname{Prob}(K=k)=\frac{(\lambda \cdot \Delta T)^{k}}{k!} \cdot e^{-\lambda \cdot \Delta T}
$$

- $\Delta T=0.05$ seconds; λ * $\Delta T=1$
- $\operatorname{Prob}(K>=1)=1-\operatorname{Prob}(K=0)=1-e^{-\lambda^{*} \Delta T}$

$$
=1-e^{-1}=1-0.367879=0.632121=63 \%
$$

Poisson Simulation

$$
\operatorname{Prob}(K=k)=\frac{(\lambda \cdot \Delta T)^{k}}{k!} \cdot e^{-\lambda \cdot \Delta T}
$$

- If your computer simulation is being updated with a very small time step, what probability do you assign a Poisson distributed event?
- Assume two or more events in the same very small time step improbable
- At 20 events per second and $\Delta T=1 \mathrm{~ms}$, $\operatorname{Prob}(\mathrm{K}>=1)=1-\operatorname{Prob}(\mathrm{K}=0)=1-\mathrm{e}^{-\lambda^{*} \Delta T}$ $=1-\mathrm{e}^{-0.020}=1-0.9801=0.0198 \sim=0.020$
- NB: $\operatorname{Prob}(K>=1) \sim=\lambda^{*} \Delta T$ for small $\lambda^{*} \Delta T$

Poisson Process

- Events occur continuously at some fixed rate
- But are assumed not to occur simultaneously
- Events occur independently of each other
- The property of memorylessness
- Examples: the count for a given unit of time of
- Atoms that radioactively decay
- Raindrops that land on a plate
- Visitors to a website
- Neural action potentials

Mean = Rate

$$
\begin{gathered}
E(K)=\sum_{k=0}^{\infty} k \cdot p(k, \lambda)=\sum_{k=0}^{\infty} k \cdot\left[\frac{\lambda^{k}}{k!} \cdot e^{-\lambda}\right] \\
\lambda \cdot e^{-\lambda} \cdot \sum_{k=1}^{\infty} \frac{\lambda^{(k-1)}}{(k-1)!} \\
\lambda \cdot e^{-\lambda} \cdot \sum_{j=0}^{\infty} \frac{\lambda^{j}}{j!} \text { where } j=k-1 \\
\lambda \cdot e^{-\lambda} \cdot e^{\lambda}=\lambda
\end{gathered}
$$

Variance $=$ Mean, Part 1

$$
\begin{gathered}
\operatorname{Var}(K)=\sum_{k=0}^{\infty}(k-\lambda)^{2} \cdot p(k, \lambda)=\sum_{k=0}^{\infty}\left(k^{2}-2 \cdot k \cdot \lambda+\lambda^{2}\right) \cdot\left[\frac{\lambda^{k}}{k!} \cdot e^{-\lambda}\right] \\
\sum_{k=0}^{\infty} k^{2} \cdot\left[\frac{\lambda^{k}}{k!} \cdot e^{-\lambda}\right]-2 \cdot \lambda \cdot \sum_{k=0}^{\infty} k \cdot\left[\frac{\lambda^{k}}{k!} \cdot e^{-\lambda}\right]+\lambda^{2} \\
\sum_{k=0}^{\infty} k^{2} \cdot\left[\frac{\lambda^{k}}{k!} \cdot e^{-\lambda}\right]-2 \cdot \lambda \cdot \sum_{k=0}^{\infty} k \cdot\left[\frac{\lambda^{k}}{k!} \cdot e^{-\lambda}\right]+\lambda^{2} \sum_{k=0}^{\infty}\left[\frac{\lambda^{k}}{k!} \cdot e^{-\lambda}\right] \\
\sum_{k=0}^{\infty} k^{2} \cdot\left[\frac{\lambda^{k}}{k!} \cdot e^{-\lambda}\right]-2 \cdot \lambda^{2}+\lambda^{2} \cdot e^{-\lambda} \cdot e^{\lambda} \\
\sum_{k=0}^{\infty} k^{2} \cdot\left[\frac{\lambda^{k}}{k!} \cdot e^{-\lambda}\right]-\lambda^{2}
\end{gathered}
$$

Variance $=$ Mean, Part 2

$$
\begin{gathered}
\sum_{k=0}^{\infty} k^{2} \cdot\left[\frac{\lambda^{k}}{k!} \cdot e^{-\lambda}\right]-\lambda^{2}=\sum_{k=0}^{\infty}[k \cdot(k-1)+k] \cdot\left[\frac{\lambda^{k}}{k!} \cdot e^{-\lambda}\right]-\lambda^{2} \\
\sum_{k=0}^{\infty}[k \cdot(k-1)] \cdot\left[\frac{\lambda^{k}}{k!} \cdot e^{-\lambda}\right]+\sum_{k=0}^{\infty} k \cdot\left[\frac{\lambda^{k}}{k!} \cdot e^{-\lambda}\right]-\lambda^{2} \\
\sum_{k=0}^{\infty}[k \cdot(k-1)] \cdot\left[\frac{\lambda^{k}}{k!} \cdot e^{-\lambda}\right]+\lambda-\lambda^{2}=e^{-\lambda} \cdot \sum_{k=2}^{\infty}[k \cdot(k-1)] \cdot\left[\frac{\lambda^{k}}{k!}\right]+\lambda-\lambda^{2} \\
e^{-\lambda} \cdot \lambda^{2} \cdot \sum_{k=2}^{\infty}\left[\frac{\lambda^{(k-2)}}{(k-2)!}\right]+\lambda-\lambda^{2}=e^{-\lambda} \cdot \lambda^{2} \cdot e^{\lambda}+\lambda-\lambda^{2}=\lambda
\end{gathered}
$$

References

- Larsen and Marx (1985) An Introduction to Probability and Its Applications
- Maimon and Assad (2009) Beyond Poisson: Increased spike-time regularity across primate parietal cortex, Neuron 62: 426-440
- Merlyn (2008) How to prove the variance and Mean for a Poisson distribution?, Yahoo! Answers
- Wikipedia (2011) Poisson distribution
- Wikipedia (2011) Characterizations of the exponential function

