
Fun with Fermyon
Serverless WebAssembly Compiled from Rust

David Wallace Croft, M.Sc.

Presented to the
Dallas Rust User Meetup

2024 Jan 09 Tue

© 2024 CroftSoft Inc

WebAssembly
● WebAssembly (Wasm) is bytecode

○ Like Java bytecode but for the browser
● Many languages compile to Wasm

○ Rust might have the best support
● Wasm also runs on the server

○ Just as Java made the jump from applets
○ Just as JavaScript made the jump to Node.js

© 2024 CroftSoft Inc

Fermyon Spin
● Fermyon Spin runs Wasm components

○ Compiled from Rust and other languages
● Serverless

○ Function as a Service (FaaS)
○ Like Amazon Web Services (AWS) Lambda
○ Fast cold starts

© 2024 CroftSoft Inc

Fermyon Advent of Spin 2023
● Holiday-themed Spin-based code challenges
● Challenge 1

○ Static file server and data persistence
● Challenge 2

○ Knapsack algorithm
● Challenge 3

○ Large Language Model (LLM)
● Challenge 4

○ Bulls and Cows game

© 2024 CroftSoft Inc

Approach
● Multiple code examples available from Fermyon

○ Blogs, Documentation, GitHub, YouTube
● Code assistant

○ Started using Amazon CodeWhisperer
● Submit the code

○ Returns success or failure
● Move on

○ Assume correct once submitted

© 2024 CroftSoft Inc

Challenge 1
● Serve a holiday-themed static webpage

○ Uses a pre-compiled Wasm component
○ One complication due to using Windows
○ Deployed from GitHub CodeSpaces

● Persist data in a key-value store
○ Saves to a local file when testing locally
○ Uses a default store when deployed to Cloud

© 2024 CroftSoft Inc

Challenge 1 Workarounds
● Some workarounds required when on Windows

○ And using a precompiled Wasm component
○ Such as the static fileserver component

● This issue might already be fixed
○ https://github.com/fermyon/spin/issues/2112

● See my README.md files for the workarounds
○ https://github.com/david-wallace-croft/advent-o

f-spin/tree/main/2023/challenge1
○ https://github.com/david-wallace-croft/advent-o

f-spin/blob/main/README.md

© 2024 CroftSoft Inc

https://github.com/fermyon/spin/issues/2112
https://github.com/david-wallace-croft/advent-of-spin/tree/main/2023/challenge1
https://github.com/david-wallace-croft/advent-of-spin/tree/main/2023/challenge1
https://github.com/david-wallace-croft/advent-of-spin/blob/main/README.md
https://github.com/david-wallace-croft/advent-of-spin/blob/main/README.md

Challenge 1 spin.toml Excerpt
[component.spin-static-fs]
files = [{ source = "assets", destination = "/" }]

https://github.com/fermyon/spin/issues/2112

source = { url =
"https://github.com/fermyon/spin-fileserver/releases/download/v0.2.1/spin_static_fs.wasm",
digest = "sha256:5f05b15f0f7cd353d390bc5ebffec7fe25c6a6d7a05b9366c86dcb1a346e9f0f" }

source = "../../../spin-fileserver/target/wasm32-wasi/release/spin_static_fs.wasm"

[[trigger.http]]
route = "/data"
component = "data"

[[trigger.http]]
route = "/..."
component = "spin-static-fs"

© 2024 CroftSoft Inc

https://github.com/fermyon/spin/issues/2112

Challenge 1 Static Assets
$ pwd
/c/Users/David/git/croftsoft/rust/advent-of
-spin/2023/challenge1/assets

$ ls
index.html santa-claus.jpg stylesheet.css

© 2024 CroftSoft Inc

Challenge 1 Code
#[http_component]

fn handle_request(

 req: http::Request<Vec<u8>>

) -> anyhow::Result<impl IntoResponse> {

 let store = Store::open_default()?;

 let (status, body) = match *req.method() {

 Method::POST => {

 store.set(req.uri().path(), req.body().as_slice())?;

 (StatusCode::CREATED, None)

 },

[...other REST methods corresponding to CRUD operations]

 _ => (StatusCode::METHOD_NOT_ALLOWED, None),

 };

 let response = Response::builder()

 .body(body)

 .header("Content-Type", "application/json")

 .status(status)

 .build();

 Ok(response)

}

© 2024 CroftSoft Inc

Challenge 2
● Knapsack algorithm

○ Maximize value of integer-sized items that fit
○ Dynamic programming

● Implementation provided by AWS CodeWhisperer
○ Automatically wired up inputs to function
○ Concise code

● Tested by submitting
○ Then studied the code for two hours after

© 2024 CroftSoft Inc

Challenge 2 serde-json
#[derive(Deserialize)]

struct Input {

 capacity: usize,

 kids: Vec<usize>,

 weight: Vec<usize>,

}

#[derive(Serialize)]

struct Output {

 kids: usize,

}

impl IntoBody for Output {

 fn into_body(self) -> Vec<u8> {

 serde_json::to_string(&self).unwrap().into_body()

 }

}

© 2024 CroftSoft Inc

Challenge 2 Knapsack
fn knapsack(

 capacity: usize,

 kids: &[usize],

 weight: &[usize],

) -> usize {

 let mut knapsack = vec![0; capacity + 1];

 for i in 0..kids.len() {

 for j in (weight[i]..=capacity).rev() {

 knapsack[j] = knapsack[j].max(knapsack[j - weight[i]] + kids[i]);

 }

 }

 knapsack[capacity]

}

© 2024 CroftSoft Inc

Challenge 3
● Large Language Model (LLM) story generation

○ Generative Artificial Intelligence (AI)
○ Uses Cloud Graphics Processing Units (GPUs)

● Static types required input parameters
○ Not sure what reasonable defaults would be
○ Used Amazon CodeWhisperer suggestions

● Tweaked the prompts that I provided
○ To integrate the inputs from the user

© 2024 CroftSoft Inc

Challenge 3 spin.toml Excerpt
[component.confabulator]

ai_models = ["llama2-chat"]

allowed_outbound_hosts = []

source = "confabulator/target/wasm32-wasi/release/confabulator.wasm"

[component.confabulator.build]

command = "cargo build --target wasm32-wasi --release"

watch = ["src/**/*.rs", "Cargo.toml"]

workdir = "confabulator"

[[trigger.http]]

component = "confabulator"

route = "/..."

© 2024 CroftSoft Inc

Challenge 3 Prompt
fn make_prompt(

 characters: &[String],

 objects: &[String],

 place: &str,

) -> String {

 let mut prompt = "Tell an engaging Christmas story. \

 The story should have a happy ending. \

 The story should have a theme of joy. \

 The story should be between 250 and 500 words long. "

 .to_owned();

 prompt.push_str(&format!(

 "The story should take place in the following location: {}. ",

 place

));

 prompt.push_str(&make_include_prompt(characters, "characters", "character"));

 prompt.push_str(&make_include_prompt(objects, "objects", "object"));

 prompt

}

© 2024 CroftSoft Inc

Challenge 3 LLM Call
fn confabulate(

 characters: &[String],

 objects: &[String],

 place: &str,

) -> Output {

 let prompt = make_prompt(characters, objects, place);

 let options = llm::InferencingParams {

 max_tokens: 1000,

 repeat_penalty: 1.2,

 repeat_penalty_last_n_token_count: 0,

 temperature: 0.7,

 top_k: 0,

 top_p: 1.0,

 };

 let infer_result: Result<InferencingResult, spin_sdk::llm::Error> =

 llm::infer_with_options(

 llm::InferencingModel::Llama2Chat,

 &prompt,

 options,

);

© 2024 CroftSoft Inc

 let result = match &infer_result {

 Ok(inferencing_result) => format!("{:?}",

inferencing_result),

 Err(error) => format!("Error: {:?}", error),

 };

 let story = match infer_result {

 Ok(inferencing_result) => inferencing_result.text,

 Err(_error) => String::new(),

 }

 .trim()

 .to_owned();

 Output {

 prompt,

 result,

 story,

 }

}

Challenge 4
● Bulls and Cows game

○ Like the Mastermind board game
○ Make a guess and get a hint

● Goal is to minimize the number of guesses
○ By eliminating hypotheses after each hint

● Scoured the Web and YouTube
○ Python presentations by Adam Forsyth
○ Donald Knuth paper on Mastermind

© 2024 CroftSoft Inc

Challenge 4 Output
{
 "rounds": [
 "1: 012 -> (0, 2)",
 "2: 103 -> (0, 1)",
 "3: 240 -> (0, 2)",
 "4: 421 -> (3, 0)"
]
}

© 2024 CroftSoft Inc

Challenge 4 spin.toml Excerpt
[component.bullseye]

allowed_outbound_hosts = ["https://bulls-n-cows.fermyon.app"]

source = "bullseye/target/wasm32-wasi/release/bullseye.wasm"

[component.bullseye.build]

command = "cargo build --target wasm32-wasi --release"

watch = ["src/**/*.rs", "Cargo.toml"]

workdir = "bullseye"

[[trigger.http]]

component = "bullseye"

route = "/..."

© 2024 CroftSoft Inc

Challenge 4 Loop
 let mut permutations = make_permutations();

[...]

 while let Some(guess) = permutations.pop() {

 let bulls_cows_output: BullsCowsOutput =

 send_guess(&game_id_option, &guess).await?;

[...]

 if solved {

 break;

 }

[...]

 permutations

 .retain(|permutation| output_hint == make_hint(&guess, permutation));

[...]

 }

© 2024 CroftSoft Inc

Challenge 4 More Code
● #[serde(alias = "gameId")]
● struct Permutation
● fn has_all_unique_symbols(&self) -> bool
● impl IntoBody for BullseyeOutput
● fn make_hint(guess, secret) -> Hint
● unmatched_secret_symbols.swap_remove(index)
● fn make_permutations() -> Vec<Permutation>

© 2024 CroftSoft Inc

Future
● CroftSoft Spin Prototype

○ Cleaned-up Spin example components
● Authentication (AuthN) / Authorization (AuthZ)

○ OAuth 2.0 / OpenID Connect (OIDC)
● Fullstack Jamstack Serverless Rust

○ Rust-Wasm on frontend using Dioxus
○ Rust-Wasm on backend using Spin

● Wasm archive repositories
○ Like downloading Java Archive (JAR) files

© 2024 CroftSoft Inc

Links
● Fermyon Advent of Spin

○ https://github.com/fermyon/advent-of-spin/tree/main
● CroftSoft Advent of Spin 2023 Solutions

○ https://github.com/david-wallace-croft/advent-of-spin
● CroftSoft Spin Prototype

○ https://github.com/david-wallace-croft/spin-prototype
● Adam Forsyth, "Beating Mastermind: Winning Games,

Translating Math to Code, and Learning from Donald
Knuth", PyGotham 2018
https://youtu.be/2iCpnWYXPik?si=wxlGsvkOEfVHEfsF

© 2024 CroftSoft Inc

https://github.com/fermyon/advent-of-spin/tree/main
https://github.com/david-wallace-croft/advent-of-spin
https://github.com/david-wallace-croft/spin-prototype
https://youtu.be/2iCpnWYXPik?si=wxlGsvkOEfVHEfsF

Licenses
● Slides and code are © 2024 CroftSoft Inc
● This slide presentation is available under the

terms of the Creative Commons Attribution 4.0
International License
https://creativecommons.org/licenses/by/4.0/

● The code is available under the terms of the open
source MIT License
https://opensource.org/license/mit/

© 2024 CroftSoft Inc

https://creativecommons.org/licenses/by/4.0/
https://opensource.org/license/mit/

